STRUCTURAL DESIGN REPORT

STRUCTURAL DESIGN REPORT OF PROPOSED BASHAM RESIDENCE-FIRE DAMAGE REBUILD AT 6582 AVENIDA MARIPOSA JURUPA VALLEY CA. 02509

City of Jurupa Valley Building Department

Reviewed and Approved for Code Compliance

By: Brenda Yu Date: <u>11/22/2024</u>

Permit Number: <u>B24-001535</u>

Approval of these plans shall not be construed to be a permit for or an approval of any violations of any City, County, State or Federal laws.

PROJECT: 6582 AVENIDA MARIPOSA JURUPA VALLEY, CA. 02509

CONTENTS

1	PR	OJECT OVERVIEW
	1.1	INTRODUCTION
	1.2	SCOPE
	1.3	SOURCE DOCUMENTS
2	ST	RUCTURAL DESIGN CRITERIA6
	2.1	DESIGN CODES AND STANDARDS
	2.2	STRUCTURAL MATERIAL PROPERTIES
	2.3	DESIGN LOADING
	2.4	LOAD COMBINATION9
	2.5	WIND LOAD CALCULATION
	2.6	SEISMIC LOAD CALCULATION16
3	ST	RUCTURAL CONCEPT AND DESIGN OF ELEMENTS
	3.1	DESIGNING OF STUD WALL-1
	3.2	DESIGNING OF STUD WALL-2
	3.3	DESIGNING OF STUD WALL-3
	3.6	DESIGNING OF DRAG FORCE-1
	3.7	DESIGNING OF DRAG FORCE-2
	3.9	DESINING OF STRIP FOUDATION
	3.10	DESIGNING OF FLOOR SLAB

1 PROJECT OVERVIEW

1.1 INTRODUCTION

This report is prepared to present the structural design calculations and recommendations for the Basham Residence-Fire Damage Rebuild at 6582 Avenida Mariposa Jurupa Valley, CA. 02509. (Location is given in Figure 1.1).

Figure 1-1: Project Location.

In this report basis for structural design such as design codes and standards, material properties, various type of loadings the structure is intended to withstand and their combination of action to be considered in the design are presented. Further the approach to be adopted in the structural analysis and the design and the assumptions associated are discussed. Structural analysis and design tools such as computer packages utilized by the designer to perform the structural designs are listed. The design criteria to be used in the performance verification of the proposed structural system under both gravity and the lateral loads are presented with references. The loadings adopted by the structural designer in the design of structural elements are presented. Finally detailed calculation of each structural elements with the design summary and verification of proposed element sizes to withstand the intended loading are present.

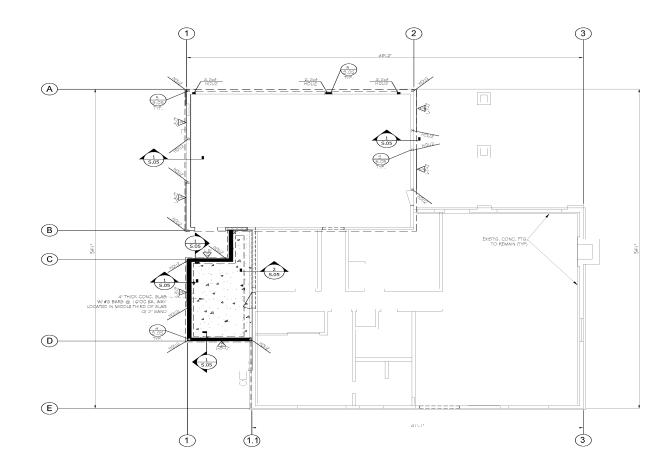


Figure 1-2: Proposed foundation plan

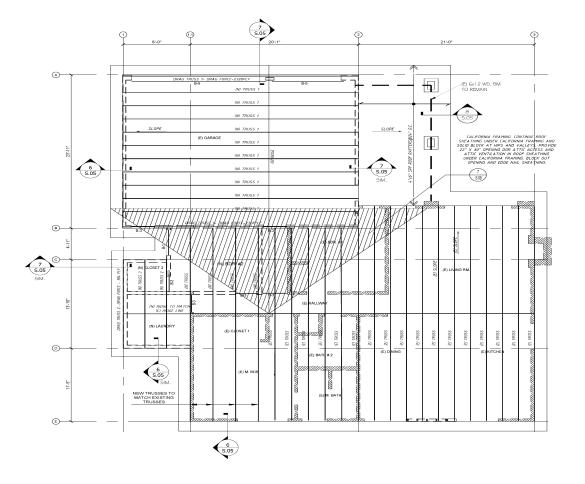


Figure 1-3: Proposed Roof framing plan

1.2 SCOPE

This report is only intended to address the following aspects and shall be read in combination with the documents referred to in section 1.3.

- Explain the basis of design adopted for the structural design.
 - Structural design codes and standards.
 - Material properties and loadings considered.
 - The basis for the calculation loadings.
- Structural concept proposed for superstructure and foundation.
- Present the detailed structural calculations of structural members.
- Detailed review of existing structural members.
- Proposed adequate sizes for proposed members.

1.3 SOURCE DOCUMENTS

- Relevant local and international standards.
 - Minimum design loads for buildings and other structures, American society of Civil Engineers.
- Architectural drawings from the client.
- National design specification for wood construction. (AWC-American wood council. (2018).

2 STRUCTURAL DESIGN CRITERIA

2.1 DESIGN CODES AND STANDARDS

Referring to Client's requirements specified in documents listed in section 1.3 of this report following design standards/ guidelines are designated for the structural design of proposed project.

- 2022 California Building Code Chapter 16; Minimum Design Loads for Buildings and Other Structure. (General Loads and Load combinations)
- 2022 California Building Code Chapter 19: American Concrete Institute; Building Code Requirements for Structural Concrete and Commentary
- National Design Specification for Wood Construction 2018 (NDS); American Wood Council. (Material properties of timber)
- California Building Code CBC 2022.
- ✤ California Residential Code CRC 2022
- https://hazards.atcouncil.org/ (Ground Snow Load)

2.2 STRUCTURAL MATERIAL PROPERTIES

Timber

All timber materials shall comply with National Design Specification of wood construction (NDS,2018). Material properties of the timber are as follows.

	Fb /psi (MPa)	Fv /psi (MPa)	Fc(per) /psi (MPa)	Fc (para)/ psi (MPa)	E/psi (MPa)
All Microllam's (LVL)	2600 (17.9)	285 (1.97)	750 (5.17)	2510 (17.3)	2 X 10 ⁶ (13780)
Douglas Fir-Larch#2	900	575	625	1350	1.6 X 10 ⁶

Abbreviations: psi - Pounds per Square Inch, per. - Perpendicular to Grain, para. - Parallel to Grain

2.3 DESIGN LOADING

Construction materials placed on the structure shall be placed in a manner not exceeding the design load specified. It is the property owner's responsibility to ensure that the design loads are not exceeded after construction. The design loads for the projects are:

> Dead Loads

Dead loads are based on material unit weights as presented in Table 2.2.

Table 2-2 Material Unit Weight

Material	Density lb./ft ³ (kN/m ³)
Aluminum	169.18 (2710)
Concrete	143.5 (2300)
Steel	490 (76.9)

> Super imposed Dead Loads

Table 2.3 shows super imposed dead to be used in different areas as per intended usage. Super imposed dead loads values are obtained from Residential Structural design guide. These values compared with the employer's requirements and conservative values among those were selected.

Table 2-3: Loading values

Loads	Value psf (kN/m ²)	Description
Floor Load	20 (0.96)	Light-frame 2x12 wood floor with 3/4-inch wood structural panel sheathing with carpet, vinyl, or similar floor covering
Roof Load	27 (1.29)	Light-frame wood roof with wood structural panel sheathing with Concrete roof tile roofing
Ceiling Load	3.3, 4.2, 5.0	1/2", 5/8", 3/4" Gypsum Board
psf – Pounds pe	er Square feet	

> Stud Wall Load

Table 2-4:Loading Value (8ft height walls)

Description	Value (plf)
2x6 @ 16" O.C	16.7
2x4 @ 16" O.C	10.6

> Live Load

Live load values are obtained from ASCE/SEI 7 -16, Table 4.1. These values compared with the employer's requirements and conservative values among those were selected.

Table 2-5: Live load

Description		Value psf (kN/m ²)
	Office Usage	50 (2.4)
Floor Loads	Balcony and Decks	1.5 times the live load for the occupancy served. Not required to exceed 100 psf (4.79)
1 Ioor Louds	Dining Rooms	100 (4.79)
	Garages	40 (1.92)
	Residentials Rooms	40 (1.92)
Roof Load	All Roofs	20 (0.96)
Stairs	Residential	40 (1.92)

Construction materials placed on the structure shall be placed in a manner not exceeding the design load specified. It is the property owner's responsibility to ensure that the design loads are not exceeded after construction. The design loads for the projects are:

> Wind load calculation.

Wind loads is determined based on the ASCE 7-16 chapter 26 regulations. Basic wind speed for Risk Category II selected as 96mph. Accordingly, the selected basic wind speed corresponds to Class 2 in the Saffir-Simpson Hurricane category.

> Seismic load calculation.

Structural system has been considered as a light-frame(wood)walls sheathed with wood structural panels rated for shear resistance. According to ASCE 7-16 Table 12.2- 1. Site class D has been chosen considering the critical situation, Response modification factor R=6.5, Importance factor I=1.0.

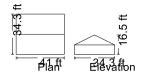
	Long period(S1)	Short period (Ss)
Time(s)	0.6	1.5

2.4 LOAD COMBINATION

Allowable stress method recommended in the design code is adopted in the design of wood elements. Combination of different loads will consider as per section of ASCE/SEI 7-16 and NDS 18. Basic load combinations to be used in the design is presented in Table 2.7. In special cases additional combination of relevant loading effects will be considered as per above stated code recommendations.

	Combination Abbreviation	Description
	Com A1	D
	Com A2	D+L
	Com A3	D+S
Allowable Stress Design	Com A4	D + 0.75L + 0.75 S
	Com A5	D + 0.6W
	Com A6 a	D + 0.75L + 0.75(0.6W) + 0.75 S
	Com A6 b	D + 0.75L + 0.75S
	Com A7	0.6D + 0.6W
Abbreviations: D – Dead loads, L – Live loads, S-Snow Load, W-Wind Load		

Table 2-7:Load combinations


2.5 WIND LOAD CALCULATION.

WIND LOADING

In accordance with ASCE7-16

Using the directional design method

Tedds calculation version 2.1.05

Building data

Type of roof	Gable
Length of building	b = 41.00 ft
Width of building	d = 34.25 ft
Height to eaves	H = 8.00 ft
Pitch of roof	$\alpha_0 = 26.4 \text{ deg}$
Mean height	h = 12.26 ft
General wind load requirements	
Basic wind speed	V = 96.0 mph
Risk category	II
Velocity pressure exponent coef (Table 26.6-1)	K _d = 0.85
Ground elevation above sea level	$z_{gl} = 0 ft$
Ground elevation factor	$K_e = exp(-0.0000362 \times z_{gl}/1ft) = 1.00$
Exposure category (cl 26.7.3)	В
Enclosure classification (cl.26.12)	Enclosed buildings
Internal pressure coef +ve (Table 26.13-1)	GC _{pi_p} = 0.18
Internal pressure coef -ve (Table 26.13-1)	GC _{pi_n} = -0.18
Gust effect factor	$G_{f} = 0.85$
Minimum design wind loading (cl.27.4.7)	$p_{min_r} = 8 \ lb/ft^2$
Topography	
Topography factor not significant	K _{zt} = 1.0

Velocity pressure equation

 $q = 0.00256 \times K_z \times K_{zt} \times K_d \times V^2 \times 1psf/mph^2$

Velocity pressures table

z (ft)	Kz (Table 26.10-1)	q _z (psf)
8.00	0.57	11.43
12.26	0.57	11.43
15.00	0.57	11.43
16.51	0.59	11.73

Peak velocity pressure for internal pressure

Peak velocity pressure – internal (as roof press.) qi = 11.43 psf

Pressures and forces

Net pressure	$p = q \times G_{f} \times C_{pe} - q_{i} \times GC_{pi}$
Net force	$F_w = p \times A_{ref}$

Roof load case 1 - Wind 0, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (-ve)	12.26	-0.23	11.43	-4.30	784.08	-3.37
B (-ve)	12.26	-0.60	11.43	-7.89	784.08	-6.18
Total ve	rtical net force		F _{w,v} =	= -8.56 kips		

Total vertical net force

Total horizontal net force

F_{w,h} = **1.25** kips

Walls load case 1 - Wind 0, GCpi 0.18, -cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
А	8.00	0.80	11.43	5.72	328.00	1.87
В	12.26	-0.50	11.43	-6.92	328.00	-2.27
С	12.26	-0.70	11.43	-8.86	419.77	-3.72
D	12.26	-0.70	11.43	-8.86	419.77	-3.72

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading

 $A_{vert_w_0} = b \times H = 328.00 \text{ ft}^2$

A_{vert r 0} = b × d/2 × tan(α_0) = **349.00** ft²

 $F_{w,total_min} = p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{8.04 kips}$ $F_{I} = F_{w,wB} = -2.3$ kips

 $F_{w} = F_{w,wA} = 1.9$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 8.0$ kips

Roof load case 2 - Wind 0, GCpi -0.18, -0cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (+ve)	12.26	0.26	11.43	4.55	784.08	3.57
B (+ve)	12.26	-0.60	11.43	-3.77	784.08	-2.96
— · ·			-			

Total vertical net force Total horizontal net force F_{w,v} = **0.55** kips

$$F_{w,h} = 2.91 \text{ kips}$$

Walls load case 2 - Wind 0, GCpi -0.18, -0cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
А	8.00	0.80	11.43	9.83	328.00	3.22
В	12.26	-0.50	11.43	-2.80	328.00	-0.92
С	12.26	-0.70	11.43	-4.74	419.77	-1.99
D	12.26	-0.70	11.43	-4.74	419.77	-1.99

Overall loading

Projected vertical plan area of wall Projected vertical area of roof

 $A_{vert w 0} = b \times H = 328.00 \text{ ft}^2$

A_{vert r 0} = b × d/2 × tan(α_0) = **349.00** ft²

Minimum overall horizontal loading Leeward net force Windward net force Overall horizontal loading
$$\label{eq:fw_total_min} \begin{split} F_{w,total_min} &= p_{min_w} \times A_{vert_w_0} + p_{min_r} \times A_{vert_r_0} = \textbf{8.04} \text{ kips} \\ F_{I} &= F_{w,wB} = \textbf{-0.9} \text{ kips} \end{split}$$

 $F_w = F_{w,wA} = 3.2$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = \textbf{8.0} \text{ kips}$

Roof load case 3 - Wind 90, GCpi 0.18, -Cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (-ve)	12.26	-0.90	11.43	-10.80	234.38	-2.53
B (-ve)	12.26	-0.90	11.43	-10.80	234.38	-2.53
C (-ve)	12.26	-0.50	11.43	-6.92	468.77	-3.24
D (-ve)	12.26	-0.30	11.43	-4.97	630.62	-3.14
Total ver	rtical net force	Э	F _{w,v} =	= -10.25 kips		

Total vertical net force Total horizontal net force

F_{w,h} = **0.00** kips

Walls load case 3 - Wind 90, GCpi 0.18, -Cpe

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A ₁	15.00	0.80	11.43	5.72	415.17	2.37
A ₂	16.51	0.80	11.73	5.92	4.60	0.03
В	12.26	-0.46	11.43	-6.53	419.77	-2.74
С	12.26	-0.70	11.43	-8.86	328.00	-2.91
D	12.26	-0.70	11.43	-8.86	328.00	-2.91

Overall loading

Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading

Leeward net force Windward net force Overall horizontal loading
$$\begin{split} &A_{vert_w_90} = d \times H + d^2 \times tan(\alpha_0) \ / \ 4 = \textbf{419.77} \ ft^2 \\ &A_{vert_r_90} = \textbf{0.00} \ ft^2 \\ &F_{w,total_min} = p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{6.72} \\ &kips \\ &F_l = F_{w,wB} = \textbf{-2.7} \ kips \\ &F_w = F_{w,wA_1} + F_{w,wA_2} = \textbf{2.4} \ kips \\ &F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = \textbf{6.7} \ kips \end{split}$$

Roof load case 4 - Wind 90, GCpi -0.18, +Cpe

Zone	Ref. height (ft)	Ext pressure coefficient c _{pe}	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A (+ve)	12.26	-0.18	11.43	0.31	234.38	0.07
B (+ve)	12.26	-0.18	11.43	0.31	234.38	0.07
C (+ve)	12.26	-0.18	11.43	0.31	468.77	0.14
D (+ve)	12.26	-0.18	11.43	0.31	630.62	0.19
Total ve	rtical net force	2		- 0 43 kins	•	•

Total vertical net force Total horizontal net force F_{w,v} = **0.43** kips

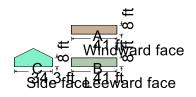
F_{w,h} = **0.00** kips

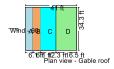
Walls load case 4 - Wind 90, GCpi -0.18, +Cpe

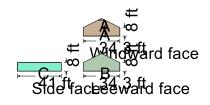
Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A ₁	15.00	0.80	11.43	9.83	415.17	4.08

Zone	Ref. height (ft)	Ext pressure coefficient cpe	Peak velocity pressure q _p (psf)	Net pressure p (psf)	Area A _{ref} (ft²)	Net force F _w (kips)
A ₂	16.51	0.80	11.73	10.04	4.60	0.05
В	12.26	-0.46	11.43	-2.42	419.77	-1.01
С	12.26	-0.70	11.43	-4.74	328.00	-1.56
D	12.26	-0.70	11.43	-4.74	328.00	-1.56

Overall loading


Projected vertical plan area of wall Projected vertical area of roof Minimum overall horizontal loading


Leeward net force Windward net force Overall horizontal loading
$$\begin{split} A_{vert_w_90} &= d \times H + d^2 \times tan(\alpha_0) \ / \ 4 = \textbf{419.77} \ ft^2 \\ A_{vert_r_90} &= \textbf{0.00} \ ft^2 \\ F_{w,total_min} &= p_{min_w} \times A_{vert_w_90} + p_{min_r} \times A_{vert_r_90} = \textbf{6.72} \\ kips \\ F_i &= F_{w,wB} = \textbf{-1.0} \ kips \end{split}$$


 $F_{w} = F_{w,wA_{1}} + F_{w,wA_{2}} = 4.1$ kips

 $F_{w,total} = max(F_w - F_l + F_{w,h}, F_{w,total_min}) = 6.7 \text{ kips}$

2.6 SEISMIC LOAD CALCULATION.

SEISMIC FORCES (ASCE 7-16)

SEISMIC FORCES (ASCE 7-16)		
		Tedds calculation version 3.1.00
Site parameters		
Site class	D	
Mapped acceleration parameters (Section 11.4.2)		
at short period	S _S = 1.500	
at 1 sec period	S ₁ = 0.600	
Alternate design spectral acceleration parameter	ers (Chap 21)	
Design spectral response acceleration at period T (· · · ·	S _a = 0.75
at short period (Sect 21.4)	$S_{DSalt} = 1.000$	Ca Chi C
at 1 sec period (Sect 21.4)	S _{D1alt} = 0.717	
Spectral response acceleration parameters	0 4 5 0 4 500	
at short period (Sect 21.4)	$S_{\text{MS}} = 1.5 \times S_{\text{DSalt}} = 1.500$	
at 1 sec period (Sect 21.4)	$S_{M1} = 1.5 \times S_{D1alt} = 1.076$	
Seismic design category		
Occupancy category (Table 1-1)	II	
Seismic design category based on short period res	ponse acceleration (Table 11.6-	1)
	D	
Seismic design category based on 1 sec period res	sponse acceleration (Table 11.6-	-2)
	D	
Seismic design category	D	
Approximate fundamental period		
Height above base to highest level of building	h _n = 16.5 ft	
From Table 12.8-2:		
Structure type	All other systems	
Building period parameter Ct	C _t = 0.02	
Building period parameter x	× = 0.75	
Approximate fundamental period (Eq 12.8-7)	$T_a = C_t \times (h_n)^x \times 1 \sec / (1ft)^x = 0$	0.164 sec
Building fundamental period (Sect 12.8.2)	T = T _a = 0.164 sec	
Long-period transition period	T _L = 8 sec	
Seismic response coefficient		
Seismic force-resisting system (Table 12.2-1)	A. Bearing_Wall_Systems	
Seismic Torce-resisting system (Table 12.2-1)	15. Light-frame (wood) walls s	heathed with wood
structural panels	13. Light-frame (wood) waits s	
Response modification factor (Table 12.2-1)	R = 6.5	
Seismic importance factor (Table 1.5-2)	l _e = 1.000	
Seismic response coefficient (Sect 12.8.1.1)	$r_{e} = 1.000$	
Calculated (Eq 12.8-2)	$C_{s calc} = S_{DSalt} / (R / I_{e}) = 0.153$	2
		0
Maximum ((Eq 12.8-3))	$C_{s_{max}} = S_a / (R / I_e) = 0.1154$	
Minimum:	C mov/0.044 - C	
Eq 9.5.5.2.1-3	$C_{s_min1} = max(0.044 \times S_{DSalt} \times C_{s_min1})$	
Eq 12.8-6 (where $S_1 \ge 0.6$)	$C_{s_{min2}} = (0.5 \times S_1) / (R / I_e) = 0$	J.U462
	$C_{s_{min}} = 0.0462$	
Seismic response coefficient	C _s = 0.1154	

Seismic base shear (Sect 12.8.1) Effective seismic weight of the structure Seismic response coefficient Seismic base shear (Eq 12.8-1)

$$\label{eq:W} \begin{split} & \mathsf{W} = \textbf{92.3} \text{ kips} \\ & C_s = \textbf{0.1154} \\ & \mathsf{V} = C_s \times \mathsf{W} = \textbf{10.6} \text{ kips} \end{split}$$

WIND AND SEISMIC FORCE DISTRIBUTION.

- Design Seismic Base shear- 10.6 Kips
- Design Wind Base shear- **8.0 Kips**

Seismic load is greater than the Wind load, hence the design governs by Seismic load.

Roof Level	X direction	Y direction
Design Shear Force	10.6kips	10.6 kips
Wall length	121.5 ft	155.6 ft
Shear force(per unit length)	87.24 lb/ft	68.12 lb/ft

3 STRUCTURAL CONCEPT AND DESIGN OF ELEMENTS

Proposed element arrangement and design verification of those structural elements are presented in this chapter. Finite element analysis for the structure was done to to check the stability of the structure.

3.1 DESIGNING OF STUD WALL-1

• Proposed Member : 2"X 6" Douglas-Fir-Larch (North)@16"

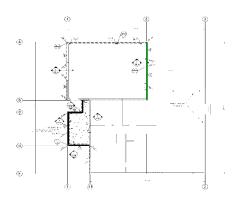


Figure 3-1:Key Plan

		Loading		Tributary	Loading		
Element	S. Dead (lb/ft ²)	Live (lb/ft ²)	Snow (lb/ft ²)	Width(ft)	S. Dead (lb/ft)	Live (lb/ft)	Snow (lb/ft)
Roof	27	20	-	14.2	383.4	284	-
Ceiling	5	-	-	14.2	71.0	-	-
	Total					284	-

- Seismic load = 1053.82 lbs
- Wind load= 902.4 lbs
- Seismic load is greater than the Wind load, hence the design governs by Seismic load.

Table 3-2: Design Summary

		Capacity	Maximum	Utilization	
Shear capacity	lbs	7147	738	0.103	0
Chord capacity	lb/in ²	1285	49	0.038	0
Deflection	in	1.920	0.090	0.047	0

Refer Annex A for detailed calculation.

3.2 DESIGNING OF STUD WALL-2

Proposed Member : 2"X 6" Douglas-Fir-Larch (North)@16" \$ 0 200 att 24, 2 to Di Fiki Takatara 50.0% ٢ ٢ (jac) (For the second RENTRUSSISTO NATO DISTRO NURCES $\dot{\omega}$ $\langle \mathbf{G} \rangle$

Figure 3-2:Key Plan

Table 3-3:Wall Loading

•

		Loading		Tributary	Loading		
Element	S. Dead (lb/ft ²)	Live (lb/ft ²)	Snow (lb/ft ²)	Width(ft)	S. Dead (lb/ft)	Live (lb/ft)	Snow (lb/ft)
Roof	27	20	-	6.5	175.5	130	-
Ceiling	5	-	-	6.5	32.5	-	-
	Total					130	-

- Seismic load = 2060.63 lbs
- Wind load= 416.0 lbs
- Seismic load is greater than the Wind load, hence the design governs by Seismic load.

Table 3-4:Design Summary

		Capacity	Maximum	Utilization	
Shear capacity	lbs	9100	1442	0.159	0
Chord capacity	lb/in ²	1285	43	0.034	0
Collector capacity	lb/in ²	1040	12	0.012	0

Refer Annex B for detailed calculation.

3.3 DESIGNING OF STUD WALL-3

Proposed Member : 2"X 6" Douglas-Fir-Larch (North)@16"

Figure 3-3:Key Plan

Table 3-5:Wall Loading

•

		Loading		Tributary			
Element	S. Dead (lb/ft ²)	Live (lb/ft ²)	Snow (lb/ft ²)	Width(ft)	S. Dead (lb/ft)	Live (lb/ft)	Snow (lb/ft)
Roof	27	20	-	8.3	224.1	166.0	-
Ceiling	5	-	-	8.3	41.5	-	-
	Total					166.0	-

- Seismic load = 3585.56 lbs
- Wind load=1632.0 lbs
- Seismic load is greater than the Wind load, hence the design governs by Seismic load.

Table 3-6:Design Summary

		Capacity	Maximum	Utilization	
Shear capacity	lbs	6825	2510	0.368	0
Chord capacity	lb/in ²	1040	68	0.065	0
Collector capacity	lb/in²	1040	25	0.024	0

Refer Annex C for detailed calculation.

3.4 DESIGNING OF DRAG FORCE-1

• Roof Diaphragm calculation for drag truss design.

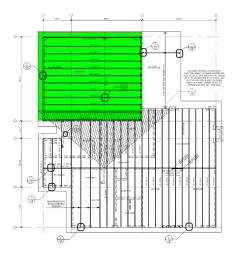
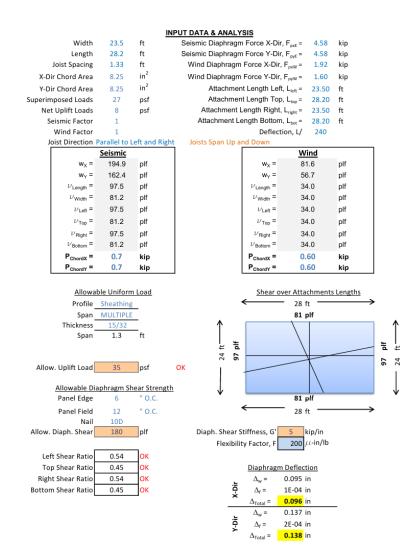



Figure 3-4: Key plan

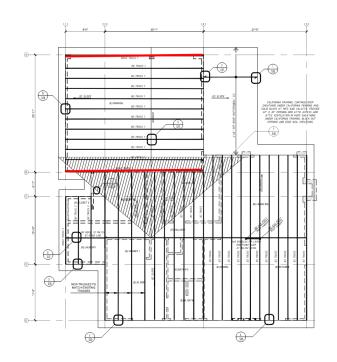


Figure 3-5: Key plan

• Horizontal Diaphragm forces

 $97p/f \ge 24ft = 2328 lb$

• Vertical Diaphragm forces

 $81p/f \ge 28ft = 2268 lb$

3.5 DESIGNING OF DRAG FORCE-2

• Roof Diaphragm calculation for drag truss design.

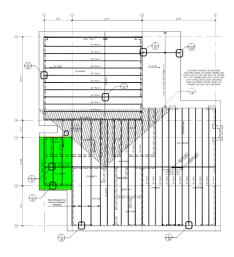
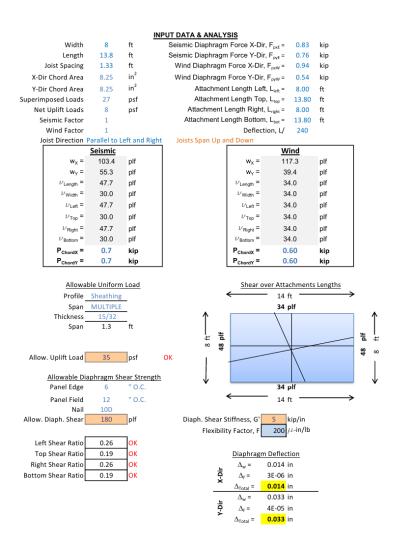



Figure 3-6: Key plan

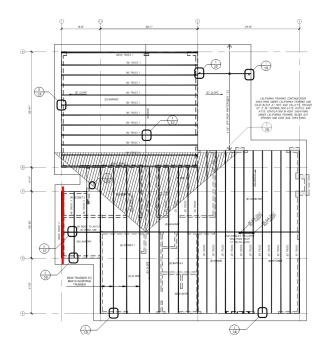


Figure 3-7: Key plan

• Horizontal Diaphragm forces

 $48p/f \ge 8ft = 384 lb$

• Vertical Diaphragm forces

 $34p/f \ge 14ft = 476 lb$

3.6 DESIGNING OF STRIP FOUDATION

• Proposed Member: 12" (width) x 12" (depth)

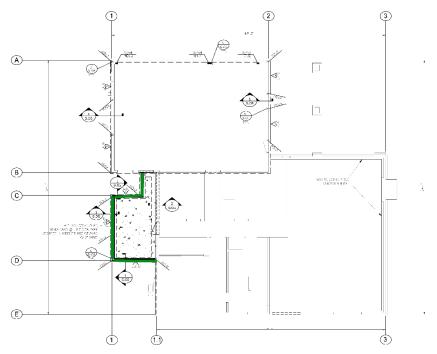


Figure 3-8- Key Plan

Table 3-7- Foundation Loading

Element	Loading					
	S. Dead (lb)	Live (lb)	Snow (lb)	Wind (lb/ft)	Seismic (lb/ft)	
Foundation	108.0	80.0	-	256.0	50.77	

Table 3-8- Design Summary

		Applied	Resisting	FS (*Utili	z.)
Uplift verification	kips	0.5			•
Soil bearing	ksf	0.46	1.5	0.307*	•
		Required	Provided	Utiliz.	Note
Min. area of reinf.,bot.	in ²	0.000	0.440	Ø	
Max. reinf. spacing,		18.0	3.0	ő	
naxi renn spueng,		10.0	5.0	· · · ·	

Refer Annex D for detailed calculation.

3

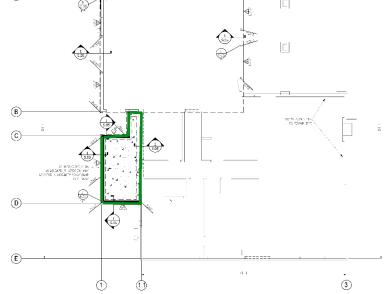
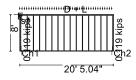


Figure 3-9-Key Plan

Total Floor Live Load = 105 psf Compressive strength of concrete = 2500 PSi $= 1.5 * 6 * \sqrt{2500}$ Allowable fiber strength (S) = 450 $= 257.876 * S* \sqrt{\frac{Kh}{E}}$ W

$$= 257.876*450*\sqrt{\frac{100*4}{4*10^6}}$$
$$= 1160.4 \text{ Psf} > 105 \text{ psf}$$


So, 4" thick slab is good.

ANNEX A

WOOD SHEAR WALL DESIGN (NDS)-STUD WALL-1

In accordance with NDS2018 allowable stress design and the segmented

shear wall method		
		Tedds calculation version 1.2.04
Panel details		
gypsum sheathing sheathing on both sides		
Panel height	h = 8 ft	
Panel length	b = 20.42 ft	
Total area of wall	A = h × b = 163.36 ft ²	

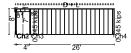
Panel construction	
Nominal stud size	2" x 6"
Dressed stud size	1.5" x 5.5"
Cross-sectional area of studs	A _s = 8.25 in ²
Stud spacing	s = 16 in
Nominal end post size	2 x 2" x 6"
Dressed end post size	2 x 1.5" x 5.5"
Cross-sectional area of end posts	A _e = 16.5 in ²
Hole diameter	Dia = 1 in
Net cross-sectional area of end posts	A _{en} = 13.5 in ²
Nominal collector size	2 x 2" x 6"
Dressed collector size	2 x 1.5" x 5.5"
Service condition	Dry
Temperature	100 degF or less
Vertical anchor stiffness	k _a = 30000 lb/in
From NDS Supplement Table 44 - Poference	e design values for visually graded dimension lumber (2"

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2"

••	
- 4" thick)	
Species, grade and size classification	Douglas Fir-Larch (North), no.2 grade, 2" & wider
Specific gravity	G = 0.49
Tension parallel to grain	F _t = 500 lb/in ²
Compression parallel to grain	F _c = 1400 lb/in ²
Modulus of elasticity	E = 1600000 lb/in ²
Minimum modulus of elasticity	E _{min} = 580000 lb/in ²

Sheathing details	
Sheathing material	1/2" x 4' gypsum sheathing with blocking
Fastener type	0.120" nails at 4"centers
From SDPWS Table 4.3C Nominal Unit Shear C Portland Cement Plaster	apacities for Wood-Frame Shear Walls - Gypsum and
Nominal unit shear capacity for seismic desig	n v _s = 350 lb/ft
Nominal unit shear capacity for wind design	v _w = 350 lb/ft
Apparent shear wall shear stiffness	Ga = 8.5 kips/in
Combined unit shear capacities	
Combined nominal unit shear capacity for sei	smic design
Combined nominal unit shear capacity for set	-
	$v_{sc} = 2 \times v_s = 700 \text{ lb/ft}$
Combined nominal unit shear capacity for win	-
	$v_{wc} = 2 \times v_w = 700 \text{ lb/ft}$
Combined apparent shear wall shear stiffness	$G_{ac} = G_{a1} + G_{a2} = 17$ kips/in
Loading details	
Dead load acting on top of panel	D = 454.4 lb/ft
Floor live load acting on top of panel	L _f = 284 lb/ft
Self weight of panel	$S_{wt} = 17 \text{ lb/ft}^2$
In plane seismic load acting at head of panel	E _q = 1053.82 lbs
Design spectral response accel. par., short periods	S S _{DS} = 1.2
From IBC 2018 cl.1605.3.1 Basic load combinat	ions
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	D + 0.45W + 0.75L _f + 0.75(L _r or S or R)
Load combination no.4	D + 0.525E + 0.75L _f + 0.75S
Load combination no.5	0.6D + 0.6W
Load combination no.6	0.6D + 0.7E
Adjustment factors	
Load duration factor – Table 2.3.2	C _D = 1.60
Size factor for tension – Table 4A	C _{Ft} = 1.30
Size factor for compression – Table 4A	C _{Fc} = 1.10
Wet service factor for tension – Table 4A	C _{Mt} = 1.00
Wet service factor for compression – Table 4A	C _{Mc} = 1.00
Wet service factor for modulus of elasticity – Table	4A
	C _{ME} = 1.00
Temperature factor for tension – Table 2.3.3	C _{tt} = 1.00
Temperature factor for compression – Table 2.3.3	
	C _{tc} = 1.00
Temperature factor for modulus of elasticity – Tabl	
	$C_{tE} = 1.00$
Incising factor – cl.4.3.8	$C_i = 1.00$
Buckling stiffness factor – cl.4.4.2	$C_{\rm T} = 1.00$
Adjusted modulus of elasticity	$E_{min}' = E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T = 580000 \text{ psi}$
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1565 \text{ psi}$
Reference compression design value	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = \textbf{2464 psi}$
For sawn lumber	$c = 0.8$ Column stability factor – eqn.3.7-1 C_P
= $(1 + (F_{cE} / F_c^*)) / (2 \times c) - \sqrt{((1 + (F_{cE} / F_c^*)))}$	$(2 \times c)]^2$ - (F _{cE} / F _c *) / c) = 0.52

From SDPWS Table 4.3.4 Maximum Shear Wall	Aspect Ratios
Maximum shear wall aspect ratio	2
Shear wall length	b = 20.42 ft
Shear wall aspect ratio	h / b = 0.392
Segmented shear wall capacity	
Maximum shear force under seismic loading	$V_{s_max} = 0.7 \times E_q = 0.738 \text{ kips}$
Shear capacity for seismic loading	$V_{s} = v_{sc} \times b / 2 = 7.147$ kips
	$V_{s_{max}} / V_{s} = 0.103$
PASS - Shear ca	apacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b = 0.392
Load combination 6	
Shear force for maximum tension	V = 0.7 × E _q = 0.738 kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt})$
	× h)) × s / 2 = 0.17 kips
Maximum tensile force in chord	T = V × h / (b) - P = 0.119 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 9 \text{ lb/in}^2$
Design tensile stress	$F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1040} \ lb/in^2$
	$f_t / F_t' = 0.008$
	tensile stress exceeds maximum applied tensile stress
Load combination 4	
Shear force for maximum compression	$V = 0.525 \times E_{q} = 0.553 \text{ kips}$
Axial force for maximum compression	$P = ((D + S_{wt} \times h) + 0.525 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h))$
	h) + $0.75 \times L_f$) × s / 2 = 0.585 kips
Maximum compressive force in chord	$C = V \times h / (b) + P = 0.802$ kips
Maximum applied compressive stress	$f_c = C / A_e = 49 \text{ lb/in}^2$
Design compressive stress	$\begin{aligned} F_c' = F_c \times C_D \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_i \times C_P = 1285 \text{ lb/in}^2 \\ f_c / F_c' = 0.038 \end{aligned}$
PASS - Design compressive	e stress exceeds maximum applied compressive stress
Hold down force	
Chord 1	T ₁ = 0.119 kips
Chord 2	$T_1 = 0.119$ kips $T_2 = 0.119$ kips
Seismic deflection	
Design shear force	$V_{\delta s} = E_q = 1.054 \text{ kips}$
Deflection limit	Δ_{s_allow} = 0.020 × h = 1.92 in
Induced unit shear	$v_{\delta s} = V_{\delta s} / b = $ 51.61 lb/ft
Anchor tension force	$T_{\delta} = max(0 \text{ kips}, v_{\delta s} \times h - (0.6 - 0.2 \times S_{DS}) \times (D + S_{wt} \times h)$ $\times s / 2) = 0.271 \text{ kips}$
Shear wall elastic deflection – Eqn. 4.3-1	$\begin{split} &\delta_{swse} = 2 \times v_{\delta s} \times h^3 / (3 \times E \times A_e \times b) + v_{\delta s} \times h / (G_{ac}) + h \\ &\times T_\delta / (k_a \times b) = \textbf{0.028} \text{ in} \end{split}$
Deflection ampification factor	$C_{d\delta} = 4$
Seismic importance factor	l _e = 1.25
Amp. seis. deflection – ASCE7 Eqn. 12.8-15	δ_{sws} = $C_{\text{d}\delta} \times \delta_{\text{swse}}$ / I_e = 0.09 in
	δ_{sws} / Δ_{s_allow} = 0.047
P	ASS - Shear wall deflection is less than deflection limit


ANNEX B

WOOD SHEAR WALL DESIGN (NDS)-STUD WALL -2

In accordance with NDS2018 allowable stress design and the segmented shear wall method

h = 8 ft b = **30.25** ft Tedds calculation version 1.2.04

Panel details
gypsum sheathing sheathing on both sides
Panel height
Panel length

Panel opening details

w _{o1} = 4 ft
h _{o1} = 7 ft
l _{o1} = 7 ft
P _{o1} = 0.25 ft
$A = h \times b - w_{o1} \times h_{o1} = \textbf{214} \ ft^2$
2" x 6"
1.5" x 5.5"
A _s = 8.25 in ²
s = 16 in
2 x 2" x 6"
2 x 1.5" x 5.5"
A _e = 16.5 in ²
Dia = 1 in
A _{en} = 13.5 in ²
2 x 2" x 6"
2 x 1.5" x 5.5"
Dry
100 degF or less
k _a = 30000 lb/in

From NDS Supplement Table 4A - Reference design values for visually graded dimension lumber (2"

- 4" thick)	
Species, grade and size classification	Douglas Fir-Larch (North), no.2 grade, 2" & wider
Specific gravity	G = 0.49
Tension parallel to grain	F _t = 500 lb/in ²
Compression parallel to grain	F _c = 1400 lb/in ²
Modulus of elasticity	E = 1600000 lb/in ²
Minimum modulus of elasticity	E _{min} = 580000 lb/in ²

Sheathing details	
Sheathing material	1/2" x 4' gypsum sheathing with blocking
Fastener type	0.120" nails at 4"centers
From SDPWS Table 4.3C Nominal Unit Shear Ca Portland Cement Plaster	apacities for Wood-Frame Shear Walls - Gypsum and
Nominal unit shear capacity for seismic design	n vs = 350 lb/ft
Nominal unit shear capacity for wind design	$v_w = 350 \text{ lb/ft}$
Apparent shear wall shear stiffness	$G_a = 8.5 \text{ kips/in}$
	$G_a = 6.5 \text{ kps/III}$
Combined unit shear capacities	
Combined nominal unit shear capacity for seis	smic design
	$v_{sc} = 2 \times v_s = 700 \text{ lb/ft}$
Combined nominal unit shear capacity for win	d design
	$v_{wc} = 2 \times v_w = 700 \text{ lb/ft}$
Combined apparent shear wall shear stiffness	G _{ac} = G _{a1} + G _{a2} = 17 kips/in
Loading details Dead load acting on top of panel	D = 208 lb/ft
Floor live load acting on top of panel	$L_{\rm f} = 130 \text{lb/ft}$
Self weight of panel	$S_{\text{wt}} = 170 \text{ lb/ft}^2$
In plane seismic load acting at head of panel	$E_{q} = 2060.63 \text{ lbs}$
Design spectral response accel. par., short periods	•
From IBC 2018 cl.1605.3.1 Basic load combinati	
Load combination no.1	D + 0.6W
Load combination no.2	D + 0.7E
Load combination no.3	$D + 0.45W + 0.75L_f + 0.75(L_r \text{ or } S \text{ or } R)$
Load combination no.4	D + 0.525E + 0.75L _f + 0.75S
Load combination no.5	0.6D + 0.6W
Load combination no.6	0.6D + 0.7E
Adjustment factors	
Load duration factor – Table 2.3.2	$C_{\rm D}=1.60$
Size factor for tension – Table 4A	$C_{Ft} = 1.30$
Size factor for compression – Table 4A	$C_{Fc} = 1.10$
Wet service factor for tension – Table 4A	$C_{Mt} = 1.00$
Wet service factor for compression – Table 4A	C _{Mc} = 1.00
Wet service factor for modulus of elasticity – Table	
Town creture factor for tonging Table 2.2.2	$C_{ME} = 1.00$
Temperature factor for tension – Table 2.3.3	$C_{tt} = 1.00$
Temperature factor for compression – Table 2.3.3	C – 1 00
Tomporature factor for modulus of electicity Table	$C_{tc} = 1.00$
Temperature factor for modulus of elasticity – Table	$C_{tE} = 1.00$
Incising factor – cl.4.3.8	$C_{i} = 1.00$
Buckling stiffness factor – cl.4.4.2	$C_{\rm f} = 1.00$ $C_{\rm T} = 1.00$
Adjusted modulus of elasticity	$E_{\text{min}}' = E_{\text{min}} \times C_{\text{ME}} \times C_{\text{tE}} \times C_{\text{i}} \times C_{\text{T}} = 580000 \text{ psi}$
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1565 \text{ psi}$
Reference compression design value	$F_{c}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = 2464 \text{ psi}$
For sawn lumber	c = 0.8

Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c))})$
	$(2 \times c)^2 - (F_{cE} / F_c^*) / c) = 0.52$
From SDPWS Table 4.3.4 Maximum Shear Wall	-
Maximum shear wall aspect ratio	2 b 0.25 #
Segment 1 wall length Shear wall aspect ratio	b ₁ = 0.25 ft h / b ₁ = 32
Segment 2 wall length	$b_2 = 26 \text{ ft}$
Shear wall aspect ratio	$b_2 = 0.308$
Segmented shear wall capacity - Strength distr Maximum shear force under seismic loading	
•	$V_{s_max} = 0.7 \times E_q = 1.442 \text{ kips}$
Shear capacity for seismic loading	$V_{s} = v_{sc} \times (b_{2}) / 2 = 9.1 \text{ kips}$
DAGO, Chases	$V_{s_{max}} / V_{s} = 0.159$
	apacity for seismic load exceeds maximum shear force
Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b ₁ = 32
Segment not considere	d, shear wall aspect ratio exceeds maximum allowable.
Chord capacity for chords 3 and 4	
Shear wall aspect ratio	h / b ₂ = 0.308
Load combination 6	
Shear force for maximum tension	$V = 0.7 \times E_q = 1.442$ kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt})$
	× h)) × s / 2 = 0.099 kips
Maximum tensile force in chord	T = V × (b ₂ / (b ₂)) × (h / b ₂) - P = 0.345 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 26 \text{ lb/in}^2$
Design tensile stress	$F_t{'} = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1040} \ lb/in^2$
	f _t / F _t ' = 0.025
-	tensile stress exceeds maximum applied tensile stress
Load combination 2	
Shear force for maximum compression	$V = 0.7 \times E_q = 1.442$ kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h))$
	× s / 2 = 0.268 kips
Maximum compressive force in chord	$C = V \times (b_2 / (b_2)) \times (h / b_2) + P = 0.712$ kips
Maximum applied compressive stress	$f_c = C / A_e = 43 \text{ lb/in}^2$
Design compressive stress	$\textbf{F}_{c}{'} = \textbf{F}_{c} \times \textbf{C}_{D} \times \textbf{C}_{Mc} \times \textbf{C}_{tc} \times \textbf{C}_{Fc} \times \textbf{C}_{i} \times \textbf{C}_{P} = \textbf{1285} \ lb/in^{2}$
	f _c / F _c ' = 0.034
PASS - Design compressive	e stress exceeds maximum applied compressive stress

Collector capacity

	Collector axial for	e diagram (kips)
0.2	0	
U	U	

Collector seismic design force factor	F _{Coll} = 1
Maximum shear force on wall	$V_{max} = F_{Coll} \times V_{s_max} = 1.442 \text{ kips}$
Maximum force in collector	P _{coll} = 0.203 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 12 \text{ lb/in}^2$
Design tensile stress	$\textbf{F}_{t}^{'} = \textbf{F}_{t} \times \textbf{C}_{D} \times \textbf{C}_{Mt} \times \textbf{C}_{tt} \times \textbf{C}_{Ft} \times \textbf{C}_{i} = \textbf{1040} \text{ lb/in}^{2}$
	$f_t / F_t' = 0.012$
PASS - Design te	ensile stress exceeds maximum applied tensile stress
Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 12 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$F_{c}{}^{'} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{2464} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.005
PASS - Design compressive	stress exceeds maximum applied compressive stress

Hold down force

Chord 3	T ₃ = 0.345 kips
Chord 4	T ₄ = 0.345 kips

DESIGN WARNING - Design using the strength distribution method to distribute shear loads to individual shear wall segments does not include a deflection check as results to that method are not reliable. Under seismic loads, a drift check is required as part of the design. Suggest using the equal deflections load distribution method to include the seismic drift check in this design.

ANNEX C

WOOD SHEAR WALL DESIGN (NDS)-STUD WALL-3

In accordance with NDS2018 allowable stress design and the segmented shear wall method

Tedds calculation version 1.2.04

Panel details	
gypsum sheathing sheathing on both sides	
Panel height	h = 8 ft
Panel length	b = 41.1 ft

Service condition

Temperature

Panel opening details	
Width of opening	w _{o1} = 6 ft
Height of opening	h _{o1} = 7 ft
Height to underside of lintel over opening	l _{o1} = 7 ft
Position of opening	P _{o1} = 6 ft
Width of opening	w _{o2} = 3 ft
Height of opening	h _{o2} = 4 ft
Height to underside of lintel over opening	l _{o2} = 7 ft
Position of opening	P _{o2} = 13.6 ft
Width of opening	w _{o3} = 5 ft
Height of opening	$h_{o3} = 7$ ft
Height to underside of lintel over opening	l _{o3} = 7 ft
Position of opening	P _{o3} = 26.02 ft
Width of opening	w _{o4} = 5 ft
Height of opening	$h_{o4} = 4$ ft
Height to underside of lintel over opening	l _{o4} = 7 ft
Position of opening	P _{o4} = 32.02 ft
Total area of wall	$A=h\timesb-w_{o1}\timesh_{o1}-w_{o2}\timesh_{o2}-w_{o3}\timesh_{o3}-w_{o4}\timesh_{o4}=$
219.8 ft ²	
Panel construction	
Panel construction Nominal stud size	2" x 6"
	2" x 6" 1.5" x 5.5"
Nominal stud size	
Nominal stud size Dressed stud size	1.5" x 5.5"
Nominal stud size Dressed stud size Cross-sectional area of studs	1.5" x 5.5" A _s = 8.25 in ²
Nominal stud size Dressed stud size Cross-sectional area of studs Stud spacing	1.5" x 5.5" $A_s = 8.25 \text{ in}^2$ s = 16 in 2 x 2" x 6" 2 x 1.5" x 5.5"
Nominal stud size Dressed stud size Cross-sectional area of studs Stud spacing Nominal end post size	1.5" x 5.5" $A_s = 8.25 \text{ in}^2$ s = 16 in 2 x 2" x 6"
Nominal stud size Dressed stud size Cross-sectional area of studs Stud spacing Nominal end post size Dressed end post size	1.5" x 5.5" $A_s = 8.25 \text{ in}^2$ s = 16 in 2 x 2" x 6" 2 x 1.5" x 5.5" $A_e = 16.5 \text{ in}^2$ Dia = 1 in
Nominal stud size Dressed stud size Cross-sectional area of studs Stud spacing Nominal end post size Dressed end post size Cross-sectional area of end posts	1.5" x 5.5" $A_s = 8.25 \text{ in}^2$ s = 16 in 2 x 2" x 6" 2 x 1.5" x 5.5" $A_e = 16.5 \text{ in}^2$ Dia = 1 in $A_{en} = 13.5 \text{ in}^2$
Nominal stud size Dressed stud size Cross-sectional area of studs Stud spacing Nominal end post size Dressed end post size Cross-sectional area of end posts Hole diameter	1.5" x 5.5" $A_s = 8.25 \text{ in}^2$ s = 16 in 2 x 2" x 6" 2 x 1.5" x 5.5" $A_e = 16.5 \text{ in}^2$ Dia = 1 in

Dry

100 degF or less

Vertical anchor stiffness	k _a = 30000 lb/in
From NDS Supplement Table 4A - Reference des	sign values for visually graded dimension lumber (2"
Species, grade and size classification Specific gravity Tension parallel to grain Compression parallel to grain Modulus of elasticity Minimum modulus of elasticity	Douglas Fir-Larch (North), no.2 grade, 2" & wider G = 0.49 $F_t = 500 \text{ lb/in}^2$ $F_c = 1400 \text{ lb/in}^2$ $E = 1600000 \text{ lb/in}^2$ $E_{min} = 580000 \text{ lb/in}^2$
Sheathing details Sheathing material Fastener type	1/2" x 4' gypsum sheathing with blocking 0.120" nails at 4"centers
From SDPWS Table 4.3C Nominal Unit Shear Ca Portland Cement Plaster Nominal unit shear capacity for seismic design Nominal unit shear capacity for wind design Apparent shear wall shear stiffness	pacities for Wood-Frame Shear Walls - Gypsum and $v_s = 350 \text{ lb/ft}$ $v_w = 350 \text{ lb/ft}$ $G_a = 8.5 \text{ kips/in}$
Combined unit shear capacities Combined nominal unit shear capacity for seis	
Combined nominal unit shear capacity for wind Combined apparent shear wall shear stiffness	$v_{wc} = 2 \times v_w = 700$ lb/ft
Loading details Dead load acting on top of panel Floor live load acting on top of panel Self weight of panel In plane seismic load acting at head of panel Design spectral response accel. par., short periods	D = 265.6 lb/ft $L_{f} = 166 \text{ lb/ft}$ $S_{wt} = 17 \text{ lb/ft}^{2}$ $E_{q} = 3585.56 \text{ lbs}$
From IBC 2018 cl.1605.3.1 Basic load combination Load combination no.1 Load combination no.2 Load combination no.3 Load combination no.4 Load combination no.5 Load combination no.6	
Adjustment factors Load duration factor – Table 2.3.2 Size factor for tension – Table 4A Size factor for compression – Table 4A Wet service factor for tension – Table 4A Wet service factor for compression – Table 4A Wet service factor for modulus of elasticity – Table 4	
Temperature factor for tension – Table 2.3.3 Temperature factor for compression – Table 2.3.3	$C_{ME} = 1.00$ $C_{tt} = 1.00$ $C_{tc} = 1.00$

Temperature factor for modulus of elasticity - Table 2.3.3

· · · · · · · · · · · · · · · · · · ·	
	C _{tE} = 1.00
Incising factor – cl.4.3.8	C _i = 1.00
Buckling stiffness factor – cl.4.4.2	C _T = 1.00
Adjusted modulus of elasticity	$E_{min}{}' = E_{min} \times C_{ME} \times C_{tE} \times C_i \times C_T = \textbf{580000} \text{ psi}$
Critical buckling design value	$F_{cE} = 0.822 \times E_{min}' / (h / d)^2 = 1565 \text{ psi}$
Reference compression design value	$F_{c}{}^{*} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} = \textbf{2464} \ psi$
For sawn lumber	c = 0.8
Column stability factor – eqn.3.7-1	$C_{P} = (1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) / (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) - (2 \times c) - \sqrt{([(1 + (F_{cE} / F_{c}^{*})) - (2 \times c) $
	$(2 \times c)]^2$ - (F _{cE} / F _c *) / c) = 0.52

From SDPWS Table 4.3.4 Maximum Shear Wall Aspect Ratios

Maximum shear wall aspect ratio	2
Segment 1 wall length	b ₁ = 6 ft
Shear wall aspect ratio	h / b ₁ = 1.333
Segment 2 wall length	b ₂ = 1.6 ft
Shear wall aspect ratio	h / b ₂ = 5
Segment 3 wall length	b ₃ = 9.42 ft
Shear wall aspect ratio	h / b ₃ = 0.849
Segment 4 wall length	b ₄ = 1 ft
Shear wall aspect ratio	h / b ₄ = 8
Segment 5 wall length	b ₅ = 4.08 ft
Shear wall aspect ratio	h / b ₅ = 1.961

Segmented shear wall capacity - Strength distribution method

Maximum shear force under seismic loading	$V_{s_max} = 0.7 \times E_q = 2.51 \text{ kips}$
Shear capacity for seismic loading	$V_s = v_{sc} \times (b_1 + b_3 + b_5) / 2 = 6.825$ kips
	$V_{s_max} / V_s = 0.368$

PASS - Shear capacity for seismic load exceeds maximum shear force

Chord capacity for chords 1 and 2	
Shear wall aspect ratio	h / b ₁ = 1.333
Load combination 6	
Shear force for maximum tension	$V = 0.7 \times E_q = 2.51$ kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt}$
	× h)) × s / 2 = 0.116 kips
Maximum tensile force in chord	T = V × (b ₁ / (b ₁ + b ₃ + b ₅)) × (h / b ₁) - P = 0.914 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 68 \text{ lb/in}^2$
Design tensile stress	$\textbf{F}_t ' = \textbf{F}_t \times \textbf{C}_D \times \textbf{C}_{Mt} \times \textbf{C}_{tt} \times \textbf{C}_{Ft} \times \textbf{C}_i = \textbf{1040} ~ lb/in^2$
	$f_t / F_t' = 0.065$
PASS - Design	tensile stress exceeds maximum applied tensile stress

Load combination 2	
Shear force for maximum compression	$V = 0.7 \times E_q = 2.51$ kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h))$
	× s / 2 = 0.313 kips
Maximum compressive force in chord	$C = V \times (b_1 / (b_1 + b_3 + b_5)) \times (h / b_1) + P = 1.342$ kips
Maximum applied compressive stress	$f_c = C / A_e = 81 \text{ lb/in}^2$
Design compressive stress	$F_{c}{}^{\prime} = F_{c} \times C_{D} \times C_{Mc} \times C_{tc} \times C_{Fc} \times C_{i} \times C_{P} = \textbf{1285} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.063

PASS - Design compressive stress exceeds maximum applied compressive stress

Chord capacity for chords 3 and 4	
Shear wall aspect ratio	h / b ₂ = 5
Segment not considere	d, shear wall aspect ratio exceeds maximum allowable.
Chord capacity for chords 5 and 6	
Shear wall aspect ratio	h / b ₃ = 0.849
Load combination 6	
Shear force for maximum tension	$V = 0.7 \times E_q = 2.51$ kips
Axial force for maximum tension	$P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt}$
	× h)) × s / 2 = 0.116 kips
Maximum tensile force in chord	T = V × (b ₃ / (b ₁ + b ₃ + b ₅)) × (h / b ₃) - P = 0.914 kips
Maximum applied tensile stress	$f_t = T / A_{en} = 68 \text{ lb/in}^2$
Design tensile stress	$\textbf{F}_{t}^{\prime} = \textbf{F}_{t} \times \textbf{C}_{D} \times \textbf{C}_{Mt} \times \textbf{C}_{tt} \times \textbf{C}_{Ft} \times \textbf{C}_{i} = \textbf{1040} ~ \text{lb/in}^{2}$
	ft / Ft' = 0.065
PASS - Design	tensile stress exceeds maximum applied tensile stress
Load combination 2	
Shear force for maximum compression	$V = 0.7 \times E_q = 2.51$ kips
Axial force for maximum compression	$P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h))$
	× s / 2 = 0.313 kips
Maximum compressive force in chord	$C = V \times (b_3 / (b_1 + b_3 + b_5)) \times (h / b_3) + P = 1.342$ kips
Maximum applied compressive stress	$f_c = C / A_e = 81 \text{ lb/in}^2$
Design compressive stress	$\textbf{F}_{c}{}^{\prime} = \textbf{F}_{c} \times \textbf{C}_{D} \times \textbf{C}_{Mc} \times \textbf{C}_{tc} \times \textbf{C}_{Fc} \times \textbf{C}_{i} \times \textbf{C}_{P} = \textbf{1285} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.063
PASS - Design compressive	e stress exceeds maximum applied compressive stress
Chord capacity for chords 7 and 8	
Shear wall aspect ratio	h / b ₄ = 8
-	h / b₄ = 8 d, shear wall aspect ratio exceeds maximum allowable.
-	
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio	
Segment not considere Chord capacity for chords 9 and 10	d, shear wall aspect ratio exceeds maximum allowable.
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension	d, shear wall aspect ratio exceeds maximum allowable. h / b ₅ = 1.961 V = 0.7 \times E _q = 2.51 kips
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6	d, shear wall aspect ratio exceeds maximum allowable. h / $b_5 = 1.961$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension	d, shear wall aspect ratio exceeds maximum allowable. h / b ₅ = 1.961 V = 0.7 \times E _q = 2.51 kips
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension	h, shear wall aspect ratio exceeds maximum allowable. h / $b_5 = 1.961$ $V = 0.7 \times E_q = 2.51$ kips $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt})$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension	d, shear wall aspect ratio exceeds maximum allowable. $h / b_5 = 1.961$ $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord	bd, shear wall aspect ratio exceeds maximum allowable. $\begin{aligned} h / b_5 &= \textbf{1.961} \\ V &= 0.7 \times E_q &= \textbf{2.51} \text{ kips} \\ P &= (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 &= \textbf{0.116} \text{ kips} \\ T &= V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P &= \textbf{0.914} \text{ kips} \end{aligned}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress	$ \begin{array}{l} \text{h} / \text{b}_5 = \textbf{1.961} \\ \text{V} = 0.7 \times \text{E}_q = \textbf{2.51} \text{ kips} \\ \text{P} = (0.6 \times (\text{D} + \text{S}_{wt} \times \text{h}) - 0.7 \times 0.2 \times \text{S}_{\text{DS}} \times (\text{D} + \text{S}_{wt} \times \text{h})) \times \text{s} / 2 = \textbf{0.116} \text{ kips} \\ \text{T} = \text{V} \times (\text{b}_5 / (\text{b}_1 + \text{b}_3 + \text{b}_5)) \times (\text{h} / \text{b}_5) - \text{P} = \textbf{0.914} \text{ kips} \\ \text{f}_t = \text{T} / \text{A}_{en} = \textbf{68} \text{ lb/in}^2 \\ \text{F}_t' = \text{F}_t \times \text{C}_D \times \text{C}_{Mt} \times \text{C}_{tt} \times \text{C}_{Ft} \times \text{C}_i = \textbf{1040} \text{ lb/in}^2 \\ \text{f}_t / \text{F}_t' = \textbf{0.065} \end{array} $
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress	$ \begin{array}{l} \text{h} / \text{b}_{5} = \textbf{1.961} \\ \\ \text{V} = 0.7 \times \text{E}_{\text{q}} = \textbf{2.51} \text{ kips} \\ \text{P} = (0.6 \times (\text{D} + \text{S}_{\text{wt}} \times \text{h}) - 0.7 \times 0.2 \times \text{S}_{\text{DS}} \times (\text{D} + \text{S}_{\text{wt}} \times \text{h})) \times \text{s} / 2 = \textbf{0.116} \text{ kips} \\ \\ \text{T} = \text{V} \times (\text{b}_{5} / (\text{b}_{1} + \text{b}_{3} + \text{b}_{5})) \times (\text{h} / \text{b}_{5}) - \text{P} = \textbf{0.914} \text{ kips} \\ \\ \text{f}_{t} = \text{T} / \text{A}_{\text{en}} = \textbf{68} \text{ lb/in}^{2} \\ \\ \text{F}_{t}' = \text{F}_{t} \times \text{C}_{\text{D}} \times \text{C}_{\text{Mt}} \times \text{C}_{\text{tt}} \times \text{C}_{\text{F}} \times \text{C}_{i} = \textbf{1040} \text{ lb/in}^{2} \end{array} $
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Maximum applied tensile stress Design tensile stress	d, shear wall aspect ratio exceeds maximum allowable. $\begin{aligned} h / b_5 &= 1.961 \\ V &= 0.7 \times E_q = 2.51 \text{ kips} \\ P &= (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips} \\ T &= V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips} \\ f_t &= T / A_{en} = 68 \text{ lb/in}^2 \\ F_t' &= F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2 \\ f_t / F_t' &= 0.065 \end{aligned}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Design tensile stress Maximum applied tensile stress Design tensile stress	d, shear wall aspect ratio exceeds maximum allowable. $\begin{aligned} h / b_5 &= 1.961 \\ V &= 0.7 \times E_q = 2.51 \text{ kips} \\ P &= (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips} \\ T &= V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips} \\ f_t &= T / A_{en} = 68 \text{ lb/in}^2 \\ F_t' &= F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2 \\ f_t / F_t' &= 0.065 \end{aligned}$ tensile stress exceeds maximum applied tensile stress $V = 0.7 \times E_q = 2.51 \text{ kips}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Maximum applied tensile stress Design tensile stress	d, shear wall aspect ratio exceeds maximum allowable. $\begin{aligned} h / b_5 &= 1.961 \\ V &= 0.7 \times E_q = 2.51 \text{ kips} \\ P &= (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips} \\ T &= V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips} \\ f_t &= T / A_{en} = 68 \text{ lb/in}^2 \\ F_t' &= F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2 \\ f_t / F_t' &= 0.065 \end{aligned}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Design tensile stress Maximum applied tensile stress Design tensile stress Maximum applied tensile stress Design tensile stress Maximum applied tensile stress Maximum applied tensile stress Design tensile stress	d, shear wall aspect ratio exceeds maximum allowable. $h / b_5 = 1.961$ $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips}$ $T = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips}$ $f_t = T / A_{en} = 68 \text{ lb/in}^2$ $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2$ $f_t / F_t' = 0.065$ tensile stress exceeds maximum applied tensile stress $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.313 \text{ kips}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Design tensile stress Maximum compression Axial force for maximum compression Maximum compressive force in chord	d, shear wall aspect ratio exceeds maximum allowable. $h / b_5 = 1.961$ $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips}$ $T = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips}$ $f_t = T / A_{en} = 68 \text{ lb/in}^2$ $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2$ $f_t / F_t' = 0.065$ tensile stress exceeds maximum applied tensile stress $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.313 \text{ kips}$ $C = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) + P = 1.342 \text{ kips}$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum applied tensile stress Design tensile stress Design tensile stress Design tensile stress Maximum compression Axial force for maximum compression Axial force for maximum compression Maximum compressive force in chord Maximum applied compressive stress	d, shear wall aspect ratio exceeds maximum allowable. $h / b_5 = 1.961$ $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips}$ $T = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips}$ $f_t = T / A_{en} = 68 \text{ lb/in}^2$ $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2$ $f_t / F_t' = 0.065$ <i>tensile stress exceeds maximum applied tensile stress</i> $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.313 \text{ kips}$ $C = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) + P = 1.342 \text{ kips}$ $f_c = C / A_e = 81 \text{ lb/in}^2$
Segment not considered Chord capacity for chords 9 and 10 Shear wall aspect ratio Load combination 6 Shear force for maximum tension Axial force for maximum tension Maximum tensile force in chord Maximum applied tensile stress Design tensile stress Design tensile stress Maximum compression Axial force for maximum compression Maximum compressive force in chord	d, shear wall aspect ratio exceeds maximum allowable. $h / b_5 = 1.961$ $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = (0.6 \times (D + S_{wt} \times h) - 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.116 \text{ kips}$ $T = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) - P = 0.914 \text{ kips}$ $f_t = T / A_{en} = 68 \text{ lb/in}^2$ $F_t' = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = 1040 \text{ lb/in}^2$ $f_t / F_t' = 0.065$ tensile stress exceeds maximum applied tensile stress $V = 0.7 \times E_q = 2.51 \text{ kips}$ $P = ((D + S_{wt} \times h) + 0.7 \times 0.2 \times S_{DS} \times (D + S_{wt} \times h)) \times s / 2 = 0.313 \text{ kips}$ $C = V \times (b_5 / (b_1 + b_3 + b_5)) \times (h / b_5) + P = 1.342 \text{ kips}$

PASS - Design compressive stress exceeds maximum applied compressive stress

Collector capacity

Collector axial force diagram (kips)

Collector seismic design force factor	F _{Coll} = 1
Maximum shear force on wall	$V_{max} = F_{Coll} \times V_{s_max} = 2.51 \text{ kips}$
Maximum force in collector	P _{coll} = 0.406 kips
Maximum applied tensile stress	$f_t = P_{coll} / (2 \times A_s) = 25 \text{ lb/in}^2$
Design tensile stress	$F_t{'} = F_t \times C_D \times C_{Mt} \times C_{tt} \times C_{Ft} \times C_i = \textbf{1040} \text{ lb/in}^2$
	$f_t / F_t' = 0.024$

PASS - Design tensile stress exceeds maximum applied tensile stress

Maximum applied compressive stress	$f_c = P_{coll} / (2 \times A_s) = 25 \text{ lb/in}^2$
Column stability factor	C _P = 1.00
Design compressive stress	$\textbf{F}_{c}{'} = \textbf{F}_{c} \times \textbf{C}_{D} \times \textbf{C}_{Mc} \times \textbf{C}_{tc} \times \textbf{C}_{Fc} \times \textbf{C}_{i} \times \textbf{C}_{P} = \textbf{2464} \text{ lb/in}^{2}$
	f _c / F _c ' = 0.010

PASS - Design compressive stress exceeds maximum applied compressive stress

Hold down force	
Chord 1	T ₁ = 0.914 kips
Chord 2	T ₂ = 0.914 kips
Chord 5	T ₅ = 0.914 kips
Chord 6	T ₆ = 0.914 kips
Chord 9	T ₉ = 0.914 kips
Chord 10	T ₁₀ = 0.914 kips

DESIGN WARNING - Design using the strength distribution method to distribute shear loads to individual shear wall segments does not include a deflection check as results to that method are not reliable. Under seismic loads, a drift check is required as part of the design. Suggest using the equal deflections load distribution method to include the seismic drift check in this design.

ANNEX D

Foundation analysis & design (ACI318) in accordance with ACI318-19 (22)-STRIP FOUNDATION

Tedds calculation version 3.2.09

FOOTING ANALYSIS

Length of foundation	$L_x = 1$ ft
Width of foundation	$L_y = 1$ ft
Foundation area	$A = L_x \times L_y = 1 \ ft^2$
Depth of foundation	h = 12 in
Depth of soil over foundation	$h_{soil} = 12$ in
Density of concrete	$\gamma_{conc} = 150.0 \text{ lb/ft}^3$

Wall no.1 details Width of wall position in y-axis	l _{y1} = 6 in y ₁ = 6 in
Soil properties	
Gross allowable bearing pressure	q _{allow_Gross} = 1.5 ksf
Density of soil	$\gamma_{soil} = 120.0 \text{ lb/ft}^3$
Angle of internal friction	$\phi_{b} = 30.0 \text{ deg}$
Design base friction angle	δ_{bb} = 30.0 deg
Coefficient of base friction	$tan(\delta_{bb}) = 0.577$
Foundation loads	
Self weight	$F_{swt} = h \times \gamma_{conc} = 150 \text{ psf}$
Soil weight	$\textbf{F}_{\text{soil}} = \textbf{h}_{\text{soil}} \times \gamma_{\text{soil}} = \textbf{120} \text{ psf}$
Wall no.1 loads per linear foot	
Dead load in z	F _{Dz1} = 0.1 kips
Live load in z	F _{Lz1} = 0.1 kips
Wind load in z	F _{Wz1} = 0.3 kips
Seismic load in z	F _{Ez1} = 0.1 kips

Footing analysis for soil and stability	
Load combinations per ASCE 7-16 1.0D (0.253)	
1.0D + 1.0L (0.307)	
Combination 2 results: 1.0D + 1.0L	
Forces on foundation per linear foot	
Force in z-axis	$\label{eq:Fdz} \begin{split} F_{dz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{0.5} \\ kips \end{split}$
Moments on foundation per linear foot	
Moment in y-axis, about y is 0	$\begin{split} M_{dy} &= \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y \ / \ 2) + \gamma_D \times (F_{Dz1} \times y_1) + \\ \gamma_L \times (F_{Lz1} \times y_1) &= \textbf{0.2 kip}_ft \end{split}$
Uplift verification	
Vertical force	F _{dz} = 0.46 kips
	PASS - Foundation is not subject to upli
Stability against sliding	
Resistance due to base friction	$F_{RFriction} = max(F_{dz}, 0 \text{ kN}) \times tan(\delta_{bb}) = 0.266 \text{ kips}$
Bearing resistance	
Eccentricity of base reaction	
Eccentricity of base reaction in y-axis	e_{dy} = M_{dy} / F_{dz} - L_y / 2 = $\boldsymbol{0.000}$ in
Strip base pressures	
	$q_1 = F_{dz} \times (1 - 6 \times e_{dy} / L_y) / (L_y \times 1 \text{ ft}) = 0.46 \text{ ksf}$
Minimum hass processo	$q_2 = F_{dz} \times (1 + 6 \times e_{dy} / L_y) / (L_y \times 1 \text{ ft}) = 0.46 \text{ ksf}$
Minimum base pressure Maximum base pressure	$q_{min} = min(q_1, q_2) = 0.46 \text{ ksf}$ $q_{max} = max(q_1, q_2) = 0.46 \text{ ksf}$
Allowable bearing capacity Allowable bearing capacity	q _{allow} = q _{allow_Gross} = 1.5 ksf
Anowable bearing capacity	$q_{allow} - q_{allow}_{Gross} - 1.3$ KS $q_{max} / q_{allow} = 0.307$
PASS - A	Ilowable bearing capacity exceeds design base pressur
FOOTING DESIGN (ACI318)	
In accordance with ACI318-19 (22)	
Material details	
Compressive strength of concrete	f' _c = 4000 psi
Yield strength of reinforcement	f _y = 60000 psi
Cover to reinforcement	c _{nom} = 3 in Normal weight
Concrete type Concrete modification factor	$\lambda = 1.00$
Wall type	$\lambda = 1.00$ Concrete
Analysis and design of concrete footing	
Load combinations per ASCE 7-16	
1.4D (0.000) 1.2D + 1.6L + 0.5Lr (0.000)	
Combination 2 results: 1.2D + 1.6L + 0.5Lr	
Forces on foundation per linear foot	
Ultimate force in z-axis	$F_{uz} = \gamma_D \times A \times (F_{swt} + F_{soil}) + \gamma_D \times F_{Dz1} + \gamma_L \times F_{Lz1} = \textbf{0.6}$ kips

Moments on foundation per linear foot Ultimate moment in y-axis, about y is 0

$$\begin{split} M_{uy} = \gamma_D \times (A \times (F_{swt} + F_{soil}) \times L_y / 2) + \gamma_D \times (F_{Dz1} \times y_1) + \\ \gamma_L \times (F_{Lz1} \times y_1) = \textbf{0.3 kip}_ft \end{split}$$

Eccentricity of base reaction Eccentricity of base reaction in y-axis

Strip base pressures

$$\begin{split} e_{uy} &= M_{uy} / \ F_{uz} - L_y / \ 2 = \textbf{0.000} \text{ in} \\ \\ q_{u1} &= F_{uz} \times (1 - 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{0.584} \text{ ksf} \\ q_{u2} &= F_{uz} \times (1 + 6 \times e_{uy} / L_y) / (L_y \times 1 \text{ ft}) = \textbf{0.584} \text{ ksf} \\ q_{umin} &= \min(q_{u1}, q_{u2}) = \textbf{0.584} \text{ ksf} \\ q_{umax} &= \max(q_{u1}, q_{u2}) = \textbf{0.584} \text{ ksf} \end{split}$$

Minimum ultimate base pressure Maximum ultimate base pressure

Moment diagram (kip_ft)

0 0.0 0

One-way shear design, y direction One-way shear design does not apply. Shear failure plane fall outside extents of foundation.